×

Deep Learning Là Gì? Tổng Quan Về Học Sâu

Ngày đăng: 30/10/2022 | No Comments

Ngày cập nhật: 30/10/2022

Deep Learning Là Gì? Tổng Quan Về Học Sâu

Deep learning là gì? Cách thức hoạt động ra sao? Deep learning đem lại lợi thế gì trong quá trình sử dụng? Khi nào thích hợp để sử dụng deep learning? Để trả lời những thắc mắc này, hãy cùng Glints tìm hiểu ngay bài viết sau đây.

Deep Learning là gì? 

Deep Learning là một tập hợp con của học máy, về cơ bản là một mạng nơ-ron có ba lớp trở lên. Những mạng lưới thần kinh này cố gắng mô phỏng hành vi của não người cho phép deep learning “học” từ một lượng lớn dữ liệu. Trong khi mạng nơ-ron có một lớp vẫn có thể đưa ra các dự đoán gần đúng, các lớp ẩn bổ sung có thể giúp tối ưu hóa và tinh chỉnh để có độ chính xác.

Deep Learning thúc đẩy nhiều ứng dụng và dịch vụ trí tuệ nhân tạo (AI) nhằm cải thiện tự động hóa, thực hiện các tác vụ phân tích và vật lý mà không cần sự can thiệp của con người. 

Công nghệ deep learning được ứng dụng rộng rãi trong các sản phẩm và dịch vụ hàng ngày chẳng hạn như trợ lý kỹ thuật số, điều khiển từ xa hỗ trợ giọng nói và phát hiện gian lận thẻ tín dụng cũng như các công nghệ mới nổi chẳng hạn như ô tô tự lái.

Deep learning là gì
Deep learning là gì

Đọc thêm: AI Marketing? Lợi Ích Không Tưởng Của AI Trong Marketing

Cách thức hoạt động của Deep learning 

Học sâu deep learning hoạt động bằng cách khám phá các cấu trúc phức tạp trong dữ liệu mà chúng trải nghiệm. Cụ thể là xây dựng các mô hình tính toán bao gồm nhiều lớp xử lý, mạng có thể tạo ra nhiều mức trừu tượng để biểu diễn dữ liệu.

Ví dụ, một mô hình học sâu được gọi là mạng nơ-ron phức hợp có thể được đào tạo bằng cách sử dụng số lượng lớn (hàng triệu) hình ảnh, chẳng hạn như những hình ảnh có chứa mèo. 

Loại mạng nơ-ron này thường học hỏi từ các pixel có trong hình ảnh mà nó thu được. Nó có thể phân loại các nhóm pixel đại diện cho các đặc điểm của mèo, với các nhóm đặc điểm như móng vuốt, tai và mắt cho biết sự hiện diện của mèo trong hình ảnh.

Đối với nhiều tác vụ, chẳng hạn như thị giác máy tính, nhận dạng giọng nói còn được gọi là xử lý ngôn ngữ tự nhiên, dịch máy và robot, hiệu suất của các hệ thống deep learning vượt xa so với các hệ thống machine learning. 

Điều này không có nghĩa là việc xây dựng các hệ thống học sâu là tương đối dễ dàng so với các hệ thống học máy thông thường. Mặc dù nhận dạng tính năng tự trị trong học sâu, hàng nghìn siêu tham số (nút bấm) cần được điều chỉnh để mô hình học sâu deep learning trở nên hiệu quả.

Lợi thế khi sử dụng Deep learning so với phương pháp machine learning cổ điển

Tự động hóa các tính năng

Một trong những lợi thế khi sử dụng deep learning là khả năng tự động hóa các tính năng, cụ thể các thuật toán học sâu có thể tự tạo ra các tính năng mới từ một số lượng hạn chế ngay trong dữ liệu đào tạo mà không cần con người can thiệp. 

Có nghĩa là học sâu có thể thực hiện những nhiệm vụ phức tạp đòi hỏi yêu cầu kỹ thuật cao với các tính năng mở rộng. Đối với các doanh nghiệp, lợi thế tự động hóa các tính năng của học sâu cho phép triển khai ứng dụng hoặc công nghệ nhanh, ổn định hơn, đem đến độ chính xác cao.

Tương thích tốt với kiểu dữ liệu phi cấu trúc

Ưu điểm lớn nhất của deep learning là khả năng hoạt động tốt với dữ liệu phi cấu trúc. Điều này đặc biệt phù hợp khi phần lớn dữ liệu kinh doanh hiện nay đều không có cấu trúc. Hình ảnh, văn bản và giọng nói được cho là những định dạng dữ liệu phổ biến nhất được các doanh nghiệp sử dụng. 

Khác với deep learning, các thuật toán machine learning cổ điển bị hạn chế về khả năng phân tích dữ liệu phi cấu trúc, có nghĩa là lượng thông tin này không được khai thác thường xuyên. Tuy nhiên, deep learning sẽ đem đến những tác động lớn nhất đối với dữ liệu phi cấu trúc. 

Đào tạo mạng lưới deep learning với dữ liệu phi cấu trúc và ghi nhãn phù hợp sẽ giúp các doanh nghiệp có thể tối ưu hóa mọi chức năng từ bán hàng, tiếp thị cho đến tài chính.

Khả năng tự học tốt hơn

Các lớp nơ-ron trong deep learning cho phép các mô hình trở nên hiệu quả hơn, cụ thể là thực hiện được các tính năng phức tạp, tác vụ tính toán chuyên sâu. Cụ thể là có thể thực hiện đồng thời nhiều hoạt động phức tạp.  

Deep learning thể hiện sự vượt trội hơn, điều này thể hiện rõ trong các nhiệm vụ nhậ thức máy, còn được gọi là khả năng hiểu được các đầu vào như: hình ảnh, âm thanh và video giống như con người, liên quan đến các bộ dữ liệu phi cấu trúc. 

Điều này là do khả năng của các thuật toán học sâu để cuối cùng, giúp học hỏi từ các lỗi của chính nó. Deep learning còn hỗ trợ việc xác minh tính chính xác, cụ thể là các dự đoán/kết quả đầu ra và thực hiện điều chỉnh trong trường hợp cần thiết. Trong một số trường hợp deep learning yêu cầu sự hỗ trợ của con người nhằm xác định dữ liệu đầu ra được chính xác nhất. 

Lợi thế về thuật toán phân tán và song song

Một mạng nơ-ron điển hình hoặc mô hình học sâu cần nhiều ngày để tìm hiểu các tham số xác định mô hình. Các thuật toán song song và phân tán giải quyết điểm khó khăn này bằng cách cho phép các mô hình học sâu được đào tạo nhanh hơn nhiều. Deep learning sẽ được đào tạo thông qua phương pháp đào tạo cục bộ, GPU hoặc kết hợp cả hai phương thức này với nhau. 

Tuy nhiên, một khối lượng lớn các bộ dữ liệu đào tạo có liên quan đến nhau không thể lưu trữ cùng một máy, điều này đã tạo nên dữ liệu song song. Việc dữ liệu hoặc deep learning được phân bổ trên nhiều máy giúp quá trình đào tạo được hiệu quả hơn. 

Tối ưu chi phí

Mặc dù đào tạo mô hình học sâu có thể tốn kém nhiều chi phí, tuy nhiên nếu được đào tạo bài bản, deep learning sẽ giúp doanh nghiệp tối ưu những chi tiêu không cần thiết. Trong các ngành công nghiệp như sản xuất, tư vấn hoặc thậm chí bán lẻ, chi phí cho một dự đoán không chính xác hoặc lỗi sản phẩm là rất lớn. Nó thường lớn hơn chi phí đào tạo mô hình học sâu.

Các thuật toán học sâu có thể tạo ra sự thay đổi giữa các tính năng học tập để giảm tỷ lệ sai sót đáng kể giữa các ngành. Điều này đặc biệt đúng khi bạn so sánh các hạn chế của mô hình học máy cổ điển với các thuật toán học sâu.

Phân tích nâng cao

Học sâu, khi được áp dụng vào khoa học dữ liệu, có thể đưa ra các mô hình xử lý tốt hơn và hiệu quả hơn. Việc deep learning có thể giám sát giúp thúc đẩy sự cải thiện liên tục, nhờ đó đem đến độ chính xác và đạt được kết quả cao. Nó cũng cung cấp cho các nhà khoa học dữ liệu bằng các kết quả phân tích ngắn gọn và đáng tin cậy hơn.

Công nghệ này hỗ trợ hầu hết các phần mềm dự đoán ngày nay với các ứng dụng từ tiếp thị đến bán hàng, nhân sự, tài chính, v.v. Giống với bộ tự động hóa bán hàng và tiếp thị thông minh cũng sử dụng các thuật toán deep learning để đưa ra những dự đoán dựa trên dữ liệu lịch sử.

Khả năng mở rộng

Học sâu có khả năng mở rộng cao do khả năng xử lý một lượng lớn dữ liệu và thực hiện nhiều phép tính đem lại kết quả tốt nhất, giúp tối ưu về chi phí và thời gian. Điều này ảnh hưởng trực tiếp đến năng suất, tính mô-đun và tính di động.

Deep Learning là một tập hợp con của học máy
Deep Learning là một tập hợp con của học máy

Khi nào nên sử dụng Deep learning?

Mặc dù có hiệu năng và mức độ chính xác vượt trội nhờ nhờ nguồn dữ liệu lớn, mô hình phức tạp. Tuy nhiên, deep learning không phải lúc nào cũng là sự lựa chọn duy nhất cho các bài toán trong lĩnh vực trí tuệ nhân tạo và học máy. Vậy nên, việc nên sử dụng deep learning lúc nào phụ thuộc vào các yếu tố sau đây:

  • Mục tiêu và độ phức tạp của dự án: Lợi thế của deep learning là giải quyết các vấn đề phức tạp bằng cách đưa ra các phân tích trong mối quan hệ ẩn trong dữ liệu. Đặc biệt mô hình này phù hợp khi áp dụng vào việc xử lý dữ liệu ở nhiều dạng khác như ngôn ngữ, hình ảnh, nhận diện giọng nói, v.v. 
  • Tài nguyên: Một khối lượng lớn dữ liệu của doanh nghiệp cần được xử lý thông qua mô hình deep learning sẽ dễ dàng hơn. Tuy nhiên, quá trình xử lý vô cùng phức tạp và tốn kém do đó tùy vào khối lượng dữ liệu mà doanh nghiệp sẽ đưa ra quyết định nên lựa chọn mô hình deep learning hay machine learning. 
  • Số lượng lớn dữ liệu: Mô hình deep learning chỉ ra các mối quan hệ ẩn sâu bên trong bộ dữ liệu. Tuy nhiên, điều này cũng đồng nghĩa với việc dữ liệu đầu vào phải lớn hơn nhiều so với thuật toán của machine learning. Do đó, đối với lượng dữ liệu lớn việc sử dụng deep learning rất phù hợp.
Công nghệ deep learning được ứng dụng rộng rãi trong các sản phẩm và dịch vụ
Công nghệ deep learning được ứng dụng rộng rãi trong các sản phẩm và dịch vụ

Đọc thêm: C++ Là Gì? Ứng Dụng Ngôn Ngữ Lập Trình C++ Trong Thực Tế

Ứng dụng của Deep learning

Một số ứng dụng của deep learning hiện nay, cụ thể:

  • Người máy: Sự phát triển của khoa học công nghệ trong thời gian gần đây, đặc biệt trong lĩnh vực người máy được thúc đẩy bởi những tiến bộ trong AI và deep learning.
  • Nông nghiệp: Ngày nay, deep learning cho phép nông dân triển khai thiết bị có thể nhìn thấy và phân biệt giữa cây trồng và cỏ dại. Khả năng này cho phép máy làm cỏ phun thuốc diệt cỏ một cách có chọn lọc lên cỏ dại và để các cây khác không bị ảnh hưởng.
  • Hình ảnh y tế và chăm sóc sức khỏe: Học sâu đang có những bước tiến đáng kể vào việc cải thiện chất lượng, chăm sóc sức khỏe bằng cách dự đoán các sự kiện y tế từ dữ liệu hồ sơ sức khỏe điện tử.

Trên đây là những chia sẻ của Glints về deep learning là gì. Hy vọng những thông tin chúng mình chia sẻ ở bài viết trên sẽ giúp bạn đọc hiểu rõ hơn về mô hình deep learning và những ứng dụng thực tế của mô hình này. 

Theo dõi Glints để xem thêm nhiều thông tin hữu ích khác nhé!

Bài viết có hữu ích đối với bạn?

Đánh giá trung bình 3 / 5. Lượt đánh giá: 2

Chưa có đánh giá nào! Hãy là người đầu tiên đánh giá bài viết.

Chúng tôi rất buồn khi bài viết không hữu ích với bạn

Hãy giúp chúng tôi cải thiện bài viết này!

Làm sao để chúng tôi cải thiện bài viết này?

[jetpack-related-posts]

Leave a Reply

Your email address will not be published. Required fields are marked *

Khám phá ngay 10k+ công việc mới tại Glints
Nền tảng tuyển dụng hàng đầu Đông Nam Á

X